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Abstract
A frequently used test for unspeciÞed nonlinear omissions is the

parametric RESET, which is based upon a Þnite polynomial. We fol-
low Abadir (1999), who suggests that the generalized hypergeometric
function may provide a more ßexible proxy for the omission; and pro-
pose a new approach, semi-nonparametric in spirit, that is based upon
estimation of the hypergeometric parameters, and which does not re-
quire large datasets. While minimal ex ante assumptions are made
about the functional form, this is fully revealed following implemen-
tation. Using Monte Carlo simulation, we examine null distributions,
and then show that the small-sample power of our test can be a con-
siderable improvement over that of the RESET, when the correct class
of functional forms of the omission is known. We investigate a variety
of theoretical and numerical issues (including rapid and stable numer-
ical optimization) that arise in development of a workable procedure,
and offer practical solutions that should be especially useful whenever
hypergeometrics are applied to problems of modelling nonlinearity.
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1 Introduction

A new and potentially rewarding application of the generalized hypergeo-
metric function, or pFq, that has barely been considered in any Þeld, is its
use for modelling nonlinearity, via estimation of the parameters of the hy-
pergeometric. This methodology is introduced in a seminal paper by Abadir
(1999), who suggests methods by which the pFq may be applied to problems
of econometric modelling and testing, by exploiting the ßexibility of its gen-
eral nonlinear character. Some of the ideas therein are extended by Lawford
(2001) and Abadir and Rockinger (2003), and are illustrated in simulations
and an application respectively; we discuss their Þndings in further detail be-
low. The main advantages of the general methodology are as follows: while
minimal ex ante assumptions are made about the functional form, this is
fully revealed following implementation, in a parsimonious manner (hyper-
geometric functions cover a wide variety of classes of functional form, e.g.
exponential, binomial, depending upon the choice of parameter values, while
the particular values assumed by these parameters will alter the shape of
the function); and the estimation procedure does not require large datasets,
so avoiding certain difficulties associated with fully nonparametric methods.

The purposes of this paper are two-fold. Firstly, we motivate our de-
velopment of a workable procedure by focusing on the speciÞc problem of
testing for omitted nonlinearity in a static regression model, and present a
new, and statistically powerful, destructive misspeciÞcation test. Secondly,
we investigate a variety of theoretical and numerical issues, (including rapid
hypergeometric generation and stable numerical optimization), in the testing
framework. We highlight some of the reasons for the previous success of the
pFq in theoretical settings, (e.g. great ßexibility and generality, with impor-
tant special cases; the feasibility of efficient numerical generation; and access
to a body of mathematical relationships between pFq�s), which are equally
valuable when designing a constructive modelling (or testing) procedure.
The practical advice that we offer should be useful when hypergeometrics
are applied to more general problems of modelling nonlinearity.

1.1 A motivating problem

When testing for unspeciÞed nonlinear omissions, Ramsey and Schmidt�s
(1976) Regression SpeciÞcation Error Test (RESET or �RESET test�) is
often implemented. A parametric test, it Þts a polynomial function to the
omitted variable; hence, the power of the RESET depends upon the correla-
tion of the polynomial with the actual misspeciÞcation, and upon the number
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of terms included within that polynomial. It has experienced widespread use
in economics since the early applied papers of Loeb (1976) [quarterly invest-
ment models] and Ramsey and Alexander (1984) [business cycle analysis],
and is implemented within many modern econometric software packages,
including MicroÞt, PC-Give, SHAZAM, and TSP.

It is important to check that a regression model is correctly speciÞed and
that no relevant regressors have been omitted. These violations are generally
assumed to have a detrimental effect upon the model performance: omission
of relevant variables will usually lead to inconsistency of parameter estima-
tors, thus rendering standard inference invalid. As Ramsey (1983, p. 244)
notes, �one needs a general, moderately robust, information parsimonious
procedure for a speciÞcation error test for omitted variables or incorrect
functional form�; and this can be a very useful tool for the detection of
inadequate models (see Godfrey, 1988, and Davidson, 2000, for discussion of
�destructive� misspeciÞcation testing). The usefulness of general tests for
misspeciÞcation motivates the search for a more ßexible proxy for the omis-
sion than the Þnite polynomials used by RESET, which is not too costly in
terms of degrees of freedom, and which is applicable to small datasets.

1.2 The plan

The structure of this paper is as follows: In Section 2, we brießy review
the reasoning underlying the RESET test, which we use later in the pa-
per, as a benchmark against which our new test will be compared. Since
hypergeometric functions have not yet been adopted as standard tools in
economic research we discuss, in Section 3, their successful use in a variety
of Þelds, and then outline the relevant theory of special functions and detail
efficient computer generation algorithms: comprehensive GAUSS code was
created, which is a useful contribution in itself and a vital component of
a workable procedure. We do not attempt an exhaustive survey but detail
only such theory as will be useful later in this paper. Hypergeometric func-
tions are then combined with a numerical optimization technique and used
in a new and promising manner in Section 4, in order to derive a new test
for additive omitted (or �neglected�) nonlinearity, with a discussion of the
computational difficulties involved. Unlike the RESET, we do not restrict
the functional form of the omission to be a particular polynomial: instead,
we allow it to be a member of a class of hypergeometric functions which can
include many important special cases.

In Section 5, we present the main results from an extensive Monte Carlo
simulation study, where the small-sample performance of the hypergeomet-
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ric test is appraised and compared with two variants of the RESET test.
We examine null distributions, and then show that the small-sample power
of our test can be a considerable improvement over that of the RESET,
when the correct class of functional forms of the omission is known. Since
our test is based upon numerical methods, we consider some issues of ro-
bustness. Although we have chosen misspeciÞcation testing to illustrate the
methodology, we offer practical solutions that should be useful whenever
hypergeometrics are applied to problems of nonlinear modelling.

In Section 6, we brießy discuss extensions of this work in two main direc-
tions. Firstly, to a parsimonious generalized hypergeometric test for omitted
nonlinearity, given that the class of functional forms of the omission is un-
known, possibly by exploiting the conßuences (mathematical links) between
pFq�s of different order, in a general-to-speciÞc manner; see Abadir (1999).
Secondly, an application of related techniques to a constructive modelling
approach, generalizing the Box-Cox transformation (Box and Cox, 1964),
whereupon the estimated hypergeometric parameters may be interpretable
to some extent. The desired theoretical foundation for all of this work (e.g.
proofs of consistency) is also mentioned. We include details of the speed
and accuracy of our vector hypergeometric generation code in an Appendix.

The new test is semi-nonparametric (or pseudo-nonparametric) in the
sense that minimal assumptions are made about the underlying parameter-
ization of the omission.1 It attempts to deduce relationships using the data
alone. However, this deÞnition is not strict, since the functional form of
the omission is fully revealed following implementation, potentially indicat-
ing the type and characteristics of the nonlinearity. This paper contributes
to an �illustrated general theory for estimation without prior knowledge of
functional forms, by means of the generalized hypergeometric series [that]
is currently being developed by Abadir, Lawford and Rockinger.� (Abadir,
1999, p. 295). While nonparametric approaches to explain data do exist,
they do not generally reveal any structural details of the relationship. An
alternative approach of modelling, estimation and testing � and particularly
one that will parsimoniously reveal the structural details of nonlinear re-

1�The preÞx semi means half and the term seminonparametric (SNP) . . . is intended
to convey the notion that SNP procedures are halfway between parametric and nonpara-
metric inference procedures.� (Gallant and Tauchen, 1989, p. 1093). The most commonly
applied SNP method is based upon Hermite polynomials and consists of modelling con-
ditional density functions as nonlinear series expansions: the leading term is chosen to
be a parametric model, while higher-order terms accommodate deviations from the lead-
ing term (and capture complicated structure in the data). The approach solves certain
dimensionality problems commonly associated with fully nonparametric methods. For
applications, see Gallant, Rossi and Tauchen (1992) and references in Podivinsky (1996).
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lationships � is possible; and this may be compared with other successful
techniques, such as artiÞcial neural networks (e.g. Kuan and White, 1994),
and those discussed in Granger and Teräsvirta (1993).

When existing methods are considered, our approach is perhaps closest
to Þtting a system of orthogonal Hermite polynomials; e.g. see Madan and
Milne (1994) and Abken, Madan and Ramamurtie (1996) for work on ap-
proximating risk-neutral densities using orthogonal Hermite polynomials. In
this paper, we estimate the parameters of hypergeometric functions rather
than systems of polynomials. In work that is directly related to ours, Abadir
and Rockinger (2003) estimate the parameters of hypergeometrics (1F1�s) in
a modelling framework. They use a mixture of Kummer functions, with pa-
rameter restrictions, to estimate density-related functionals where no prior
knowledge of the underlying functional form is available, and when the vari-
ate may not be directly observable. Their method is successfully applied to
problems in option pricing (French Franc/DeutschMark European exchange
rate options), given small datasets (e.g. 10-20 observations). We face a dif-
ferent set of problems in this paper since we seek a testing procedure that is,
to some extent, automated; and that is efficient enough for simulation stud-
ies to be a practical option. As a result, it becomes more difficult to exploit
certain properties of the hypergeometrics, e.g. argument transformations.

Lawford (2001, chs. 2 and 3) develops some of the theoretical and com-
putational aspects of modelling nonlinear relations using hypergeometric
functions, where the correct class of functional forms is known; and is the
Þrst instance of use of a variety of pFq�s in a general applied manner, and to
testing and simulation work rather than modelling. In this paper, we esti-
mate the parameters of a variety of hypergeometrics: 0F0, 1F0, 0F1, 0F2, 1F1,
1F2, 2F1, some of which require particular care in evaluation and estimation
(e.g. 1F1, 2F1). Although we Þnd that it is currently too time-consuming to
perform simulations based upon the 2F1, we illustrate the potential of the
efficient generation procedure in the Appendix, with an application of the
2F1 to constructive modelling.

Other related research is by Gordy (1998a), who introduces the com-
pound conßuent hypergeometric (CCH) distribution, with an empirical ap-
plication involving modelling of the distribution of measures of household
liquid assets across households. The CCH involves a conßuent hypergeo-
metric function of 2 variables (e.g. see Gradshteyn and Ryzhik, 1980), and
generalizes a variety of other distributions that have commonly been used
in the statistical modelling of bounded random variables, e.g. beta; and
the conßuent hypergeometric distribution (CH) (Gordy, 1998b); see also
McDonald (1984). This work is motivated by similar considerations to our
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paper, and the aim is to allow for a more ßexible description of data while
imposing more structure than that offered by a nonparametric estimator.
The CCH can be rapidly calculated over most of the parameter space, and
can take the U-shaped and single-peaked forms of the beta pdf, and also a
variety of multi-modal and long-tailed forms. Estimation of the parameters
of the CCH is performed by maximum likelihood, and the CCH is shown to
offer greater ßexibility in Þtting data than previous methods, visible differ-
ences in Þt, and additional precision that is statistically signiÞcant.

A similar approach to that of Gordy is employed by Al-Saqabi, Kalla and
Tuan (2003), who develop a generalized gamma-type pdf; and in a different
context by Kumar (2002), who introduces a new class of discrete distri-
butions, termed extended generalized hypergeometric probability distribu-
tions (EGHPD), as a generalization of generalized hypergeometric probabil-
ity distributions � although some properties are derived analytically, (e.g.
moments, moment generating function, and hazard rate), there is no dis-
cussion of parameter estimation. The pFq also plays a central role in the
work of Gottschling, Haefke and White (1999), who derive a new family of
analytically tractable and ßexible (log-)hypernormal pdf�s, based upon the
logarithm of the inverse Box-Cox transform; and use techniques of artiÞcial
neural networks to yield arbitrarily accurate approximations to classes of
functions whose antiderivatives have closed-form expressions for their inte-
grals; and in Giacomini, Gottschling, Haefke and White (2002).

Notation: We generally follow the suggestions on notation in Abadir and
Magnus (2002); although we differ in our use of a to indicate that a pa-
rameter is Þxed during a numerical optimization, and a? to represent an
optimized parameter. Throughout this paper, we represent scalar, vector
and matrix quantities as a, a and A respectively; these have representative
elements a = {aj} and A = {aij}. Special examples include the k × 1 zero
vector 0k and the k × k identity matrix Ik. The sets of reals and integers
(including zero) are denoted by R and Z respectively, where subscript +,−
indicate subsets of positive and negative numbers; e.g. Z+ = {1, 2, . . . } ≡ N,
the set of natural numbers. We introduce new notation as needed.
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2 The RESET test

The RESET test was proposed by Ramsey (1969), following discussion of
graphical methods of residual analysis by Anscombe (1961) and Anscombe
and Tukey (1963). It is a general test for misspeciÞcation, which is designed
to detect both omitted variables and incorrect functional form by testing for
a non-zero conditional mean of the disturbances, against the alternative of
speciÞcation error. The RESET is designed to handle situations in which one
has already incorporated all available a priori information, i.e. all variables
thought to be most relevant.2 Consider the null model

y =Xβ + u, u ∼ N ¡0N ,σ2IN¢ , 0 < σ2 <∞, (1)

such that y is an N × 1 vector of observations on the dependent variable;
X is an N × K non-stochastic matrix, with full column rank, of known
observations on K explanatory variables: it will be assumed that the Þrst
column ofX is an N×1 vector of ones; β is a K×1 vector of unknown (and
unobservable) real coefficients; u is an N × 1 vector of disturbance terms,
independently and identically normally distributed.

The fundamental assumption of RESET is that some unknown analytic
function of Xβ provides a good approximation to the omitted factor. A
polynomial approximation to this function is used and β replaced by the
ordinary least squares (OLS) estimate from (1). The procedure may be
formulated as a variable addition test, by testing the signiÞcance of some
matrix of regressors Z in the augmented regression

y =Xβ +Zγ + v, (2)

where Z is an N×s matrix of explanatory variables and γ is an s×1 vector
of parameters; v is an N × 1 vector of disturbance terms. The greater
the correlation between Z and the nonlinear part of the true conditional
mean of y, the greater (in general) will be the power. Although any test
variables which are correlated with the omitted variables will lead to a test
with some power against the alternative, Ramsey (1969) suggested that Z
comprise powers of the Þtted by =Xbβ, so that (Z)ij = {byj+1i }, and this has
become the standard choice. Ramsey�s original presentation uses Theil�s

2 If a particular model is inadequate due to speciÞcation error, there should be some
indication in the residuals (the distribution will differ from that postulated under the null).
Unless the regressors and the omitted variable(s) are orthogonal, the residuals will have
a non-zero expectation. It should then be possible to detect some residual pattern either
visually or, more rigorously, by means of an appropriate test statistic.
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(1965, 1968) BLUS residuals. The simpler approach that is now widely used
and that is implemented in this paper uses OLS residuals and derives from
his later work (e.g. Ramsey and Schmidt, 1976); this test is equivalent to
the original BLUS formulation.

The null hypothesis H0 : γ = 0 (no omitted nonlinearity) is tested
against the two-sided alternative H1 : γ 6= 0 using the standard F test

FR =
µbu0bubv0bv − 1

¶µ
N −K − s

s

¶
∼
H0
F (s,N −K − s) , (3)

where bu0bu and bv0bv are the sums of squared residuals from (1) and (2) re-
spectively, and the distribution of FR is known exactly under the null.3 The
statistic FR is known to have an approximate doubly non-central F distri-
bution under the alternative hypothesis. We reject the null hypothesis at
the 100α% level of signiÞcance as FR >Fα(s,N −K − s). We consider the
conventional 5% level of signiÞcance in our simulation work.4

The empirical implementation of the RESET test involves choosing the
highest power, (J+1), of byi to be used in the auxiliary regression. Since the
value of J is irrelevant to the exactness of the RESET, its importance lies
in its impact on power. As we include more variables, degrees of freedom
are lost, which could considerably reduce the power of the test. The Þrst
power of byi is omitted since the predicted value would be perfectly correlated
with the K regressors of the original model (i.e. by collinear with X). The
properties of the RESET were assessed by Ramsey and Gilbert (1972), who
provide favourable evidence on the small-sample performance of the RESET
in simulations, with J = 3; and by Thursby and Schmidt (1977). We will
also consider Z =(z)i = {by2i } as the test RESET2.

The RESET test was not designed to have power against a speciÞc alter-
native hypothesis. However, although the alternative is vague, the choice of
test statistic is motivated by a suspected departure from the maintained hy-
pothesis in some particular direction. It tests �regression directions� (David-
son and MacKinnon, 1985, 1987); e.g. for RESET2, the only direction in
which the null is false is that represented by by2i . The RESET is not de-
signed to test against any misspeciÞcation which affects higher moments of
the error terms than the mean.

3This requires that the errors are normally distributed and that the regressors are either
Þxed in random samples or independent of u; more generally, sF∼ χ2 (s), asymptotically.

4Thursby (1989, p. 222) discusses two-tailed F tests, Þnding that �F test speciÞcation
error tests such as the RESET . . . are generally most powerful when constituted as one-tail
tests. Even when the two-tail test is most powerful, the power is very low on average�.
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3 The hypergeometric function, pFq

A function y = f (x) is transcendental if it may not be transformed into
a polynomial involving the two variables, x and y, the highest powers of x
and y both being greater than unity; and the hypergeometric series is an ex-
ample of a higher transcendental function. Erdélyi, Magnus, Oberhettinger
and Tricomi (1953) provide the classic, comprehensive reference for special
functions: of particular use are chapters 1 (Gamma function), 2 (Gaussian
hypergeometric), 4 (generalized hypergeometric) and 6 (Kummer function).
Gradshteyn and Ryzhik (1980, pp. 1039-1059) provide identities and rela-
tions for the Gaussian and generalized hypergeometrics and the Kummer
function. For alternative coverage of the same material, see Rainville (1960,
chs. 4, 5 and 7), Lebedev (1972, chs. 1 and 9), Oberhettinger (1972) for the
Gaussian hypergeometric, Slater (1972) for the conßuent hypergeometric,
Wang and Guo (1989, chs. 4 and 6), Andrews, Askey and Roy (1999) and,
in brief, Bell (1968, ch. 9). A less technical approach is found in Sneddon
(1980, ch. 2). Jahnke, Emde and Lösch (1960, pp. 4-16) and Lebedev (1972,
ch. 1) are useful introductions to the Gamma function; a more detailed
treatment is Wang and Guo (1989, ch. 3). Abadir (1999, 2003), Lawford
(2001), and Abadir and Rockinger (2003) each cover hypergeometrics with
particular relevance to the problems discussed in this paper.

The hypergeometric functions can be generalized in many directions:
examples include the very general MacRobert�s E-function and Meijer�s G-
function; basic hypergeometric series; and multiple-argument hypergeomet-
rics (e.g. Appell�s hypergeometric functions), as well as forming the basis for
computation of parabolic cylinder functions, classes of spherical harmonic
functions, etc. Complex and matrix-valued parameters and arguments are
all possible. Further study of these generalizations is beyond the scope of
this paper. In our applications, we focus upon the hypergeometric series
pFq, with real, scalar parameters and real, Þnite argument, but note the
extensions as possible directions for future research.5

3.1 The importance of special functions

Special functions have been shown to occur naturally in a variety of theo-
retical and applied settings in mathematics (e.g. see the survey by Barnard,

5Matrix argument hypergeometrics are interesting from a methodological point of view,
but application and evaluation may be very difficult indeed, since the general properties
of these classes of functions have not yet been worked out with much completeness, e.g.
apart from the 0F0 (Z) and 1F0 (a;Z), other general explicit results are unknown.
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1999; and recent issues of the Journal of Computational and Applied Math-
ematics; theoretical results are often based upon special combinations of
parameters), engineering (Kacimov and Obnosov, 2001; Leamy, Noor, and
Wasfy, 2001; and Liu, Han and Lam, 2001), environmental science (Kalla
and Al-Zamil, 1997), operations research (Halpert, Lengyel, and Pach, 2000),
mathematical physics (Ruijsenaars, 1999; and Borodin and Olshanski, 2000;
and Seiberg-Witten supersymmetric theory), multivariate statistics (e.g.
Möttönen et al., 1998; and Butler and Wood, 2002a, 2002b, 2002c, and
references therein); the theory of random matrices (Edelman, Kostlan, and
Shub, 1994); and the mathematics of risk (Wang, 2001); and continue to
play varied and important roles in many kinds of investigation.

The identiÞcation of hypergeometric functions in a particular situation
can often facilitate simpliÞed analysis of a problem, since the general prop-
erties of many of these functions have been widely established in the mathe-
matical literature. Functional identities and relations between hypergeomet-
rics of different order (e.g. conßuences), as well as power series, integral and
continued fraction representations, argument transformations, and asymp-
totic expansions that may be useful for analysis or efficient numerical cal-
culation of the series, can potentially be identiÞed and applied.6 Derivation
of closed-form analytical results in terms of pFq�s instead of ad hoc power
series may be of interest in itself; but ideally, this technique will motivate
generalizations (from a univariate to a multivariate setting, perhaps).7

The generalized hypergeometric function pFq, and both extensions and
special cases thereof, have played an important role in derivation of ex-
act Þnite-sample results in statistics and econometrics since the 1960�s (e.g.
see the excellent review article by Phillips, 1983). Research by Basmann,
Bergstrom, Kabe, Mariano, Phillips, Richardson, Sargan, and Sawa, among
others, has established expressions for exact density functions of, e.g., OLS,
2SLS, GCL and LIML estimators for simple structural models; and for test-
ing criteria in a variety of contexts; connections are often seen here between

6A simple illustration in econometrics is given by Kleiber (2001). He shows that the
relative efficiency of OLS with respect to GLS, in a linear regression model (with a constant
term, and long-memory errors) tends to unity as the long-memory parameter d approaches
the boundary of the stationary region (d = 0.5). The conßuence between the 2F1 (which
arises in the autocorrelation function of a stationary, causal ARFIMA process with distinct
roots in the AR polynomial) and the binomial 1F0 is useful in simplifying the problem.

7An example where the unifying power of special functions is hinted at rather than
known arises in the study of cellular automata: �it is my guess that in the end it will in
fact turn out to be possible to get a formula for any nested pattern in terms of suitably
generalized hypergeometric functions, or perhaps other functions that are direct general-
izations of ones used in traditional mathematics.� (Wolfram, 2002, p. 612).
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the hypergeometrics and integral transforms, or the (non-central) Wishart
distribution. Expressing pdf�s in terms of hypergeometrics can facilitate
analytical study of moments, bias, and distribution functions (e.g. Owen,
1976); with corresponding analysis of existence conditions, and behaviour
as certain parameters tend to revealing limits. New applications continue to
be discovered, e.g. Hahn and Kuersteiner (2002) give the Þrst two moments
of the limiting distributions of 2SLS estimators of a simple simultaneous
equations model, with weak instruments and asymptotically vanishing iden-
tiÞcation, in terms of the 1F1; and also Sakalauskas and �ukauskaitúe (1996).
Recently, inÞnite series of zonal polynomials, which are closely related to
matrix-argument hypergeometrics, have been used to derive closed-form ex-
act results related to ratios of quadratic forms in normal variates, and have
provided important insights in the Þeld of analytic distribution theory; see
especially Hillier (2001) and Forchini (2002).

The potential of hypergeometrics as a technical tool in unit-root econo-
metrics has begun to be realized. In a series of papers in the 1990�s, Abadir
(e.g. Abadir, 1995, and references therein) details links of hypergeomet-
rics with unit root test statistics, and highlights issues of convergence and
numerical evaluation of the series. Abadir (1993b) derives a closed-form
(integral-free) expression for the non-standard limiting distribution of the
normalized autocorrelation coefficient, given a Gaussian AR(1) with unit
root, in terms of nested inÞnite sums of convergent parabolic cylinder func-
tions: the cdf may be evaluated following truncation of these series, and is
easily programmable and highly accurate � for instance, using expansions
for the conßuent hypergeometric functions derived by Abadir (1993c).8 In
the same framework, Abadir (1995) derives the limiting cdf of the t-statistic
for testing for a random walk. An alternative expression for the cdf is given
by Dietrich (2001), who uses a property of Liebnitz series to bound the
overall approximation error due to series truncation; the cdf formulae in
Abadir (1995) and Dietrich (2001) may be manipulated analytically, e.g. in
derivation of the limiting pdf, by termwise differentiation.

Abadir (1993a) derives a high-order closed form analytical approxima-
tion for the Þnite sample bias of the MLE of the autoregressive parame-
ter in a nonstationary AR(1), also in terms of nested inÞnite sums involv-
ing parabolic cylinder functions. Exact formulae for density functions and
moment formulae give rise to series related to (possibly matrix-argument)

8Parabolic cylinder functions may also be expressed in terms of Kummer�s function,
the 1F1, although this representation will not necessarily be the most efficient from the
point of view of computational generation; e.g. see Abadir (1999).
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hypergeometric functions in many areas; however, these are currently in-
tractable in many simple frameworks (e.g. multivariate generalization of
Abadir, 1993a); or may be very difficult to implement for numerical evalu-
ation.9 It may then be necessary to rely upon approximations even when
the exact formulae are available, in which case known results in terms of
hypergeometrics may sometimes form the basis for heuristic or other ap-
proximations (e.g. see Abadir, Hadri and Tzavalis, 1999, and Lawford and
Stamatogiannis, 2002, for approximate bias formulae for the MLE in a purely
nonstationary VAR(1)).

van Garderen and Shah (2002) derive the exact minimum variance un-
biased estimator of the percentage impact of a dummy variable on the level
of the dependent variable in a semilog regression equation with normal dis-
turbances; also, its variance, and the exact minimum variance unbiased es-
timator of the variance.10 Exact closed-form expressions are given in terms
of the 0F1, and the 0F1 terms are usefully interpreted as a �bias correction
for parameter uncertainty� (ibid., p. 151). It is argued that the conßu-
ence between the 0F1 and 0F0 (limm→∞ 0F1 (m;ma) = 0F0 (a)) holds ap-
proximately, for m reasonably large. This leads to a simple, accurate and
computationally convenient approximation for the exact minimum variance
unbiased estimator of the variance, the beneÞts of which are illustrated in
an application to teacher earnings. Likewise, the conßuences for the general
pFq can potentially be used to derive such approximations in other settings.

Namba (2002) derives explicit formulae for the exact predictive mean
squared error of various biased estimators in a linear regression model (e.g.
Stein-rule, minimum MSE), when relevant regressors are omitted; this may
be written in terms of nested inÞnite sums of a scalar argument 2F1, where-
upon some analytic properties are of use, e.g. convergence and termina-
tion of the series expansion. Various characteristic functions (c.f.�s) may be

9This is illustrated in a recent Bayesian study by Chao and Phillips (2002), who inves-
tigate the behaviour of posterior distributions under the Jeffreys prior in a simultaneous
equation model (general limited information setup with n+1 endogenous variables). They
give a marginal posterior density in terms of the matrix argument 1F1, which has an inÞ-
nite series representation in terms of zonal polynomials. They note the drawback that the
density, in this form (ibid., pp. 260-261) �. . . does not easily lend itself to numerical evalua-
tion, especially in the case where the number of endogenous variables n is greater than two.
One difficulty arises because no general formula is known for the zonal polynomials. . . in
the case where n > 2, so numerical calculations of the coefficients in the zonal polynomials
themselves are also needed.� The series may also be very slow to converge; hence, these
problems will make exact numerical computation difficult in practice.
10General theoretical results are given by van Garderen (2001), based upon a Laplace

inversion technique for deriving unbiased predictors in exponential families.
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usefully expressed in terms of conßuent hypergeometric functions (1F1 and
Tricomi�s function), with complex argument, e.g. Phillips (1982) for the
(non-)central F distribution; and Abadir and Magdalinos (2002) for doubly-
truncated continuous distributions.11

3.2 Useful results for the Gamma function: Γ (m)

An understanding of the properties of the Gamma function Γ (m) is a pre-
requisite for the study of many other special functions. We use the results
of this section in implementing both analytic continuation for the Gaussian
hypergeometric and asymptotics for the Kummer function. The Gamma
function is deÞned by the Gauss product

Γ (m) ≡ lim
n→∞

·
n!nm

m (m+ 1) (m+ 2) · · · (m+ n)
¸
; m ∈ C\Z0,−, (4)

which is analytic over the entire complex plane except for simple poles at
the nonpositive integers and zero. For m ∈ R+, (4) is analogous to the more
familiar integral transform deÞnition

Γ (m) =

Z ∞

0
xm−1 exp (−x)dx, (5)

which is known as Euler�s second integral. The single-valued function Γ (m)
is meromorphic, since it has simple poles only at Z0,−; and is the reciprocal
of an entire function, and therefore has no zeros. It satisÞes the fundamental
functional relation Γ (m+ 1) = mΓ (m), where Γ (m+ 1) = m! for m ∈ Z+;
and the normalization Γ (1) = 1 is made. Finally, we give an asymptotic
result for Γ (m): Stirling�s formula, which states that

Γ (m+ 1) ∼ (2πm)1/2mm exp (−m) , as m→∞.

When m ∈ Z+ and m is large, this is known as Stirling�s factorial approxi-
mation; see Patin (1989) for a concise proof.12

11Alternative derivations of doubly-truncated c.f.�s are possible, for speciÞc densities,
e.g. representation of the c.f. of the doubly-truncated N

¡
µ,σ2

¢
as a deÞnite integral,

followed by evaluation using substitution. A hypergeometric-based approach here seems
to result in some degree of trade-off between generality and simplicity.
12Γ (m+ 1) ≥ √2πmmm exp (−m) is an asymptotic to equality inequality, which holds

for m > 0. The r.h.s. is in error by 5%, 1% and 0.1% as m ≈ 1.61, 8.29 and 83.29.
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3.2.1 Γ (−m) deÞned for m ∈ R+\Z+
Lebedev (1972, p. 4) gives the reßection formula Γ (z)Γ (1− z) = π (sinπz)−1,
for z /∈ Z. Following the transformation z = m+ 1 and using the addition
rule sin (θ + φ) = sin θ cosφ+ cos θ sinφ, we Þnd that (for m /∈ Z)

Γ (−m) = −π
mΓ (m) sinπm

. (6)

Equations (5) and (6) together deÞne Γ (m) everywhere on the real line,
except for the poles. This extension has not been incorporated into the
GAUSS for Windows NT/95 gamma(·) routine, as of version 3.2.32. A
different solution is proposed by Forrey (1997, pp. 89-91).

3.3 The generalized hypergeometric function: pFq

DeÞne Pochhammer�s symbol (α)n as

(α)n ≡ α (α+ 1) · · · (α+ n− 1) = Γ (α+ n)Γ (α)−1 ; n ∈ Z+, (7)

with (α)0 ≡ 1 (for α 6= 0), and where (α)n is Þnite even when Γ (α+ n)
and Γ (α) are not analytic;13 for instance, −3 = (−3)1 = Γ (−2)Γ (−3)−1.
The shifted factorial (7) is an immediate generalization of the elementary
factorial, since n! = (1)n. Using (7), we write

pFq (a1, . . . , ap; c1, . . . , cq; z) ≡
∞X
n=0

(a1)n · · · (ap)n
(c1)n · · · (cq)n

× z
n

n!
, (8)

as a function of parameters ak and cj , and argument z; the preÞx and suffix
denote the number of numerator and denominator parameters respectively.
As shorthand for (8), we use pFq (a0; c0; z), where a and c are p×1 and q×1
vectors. When it is desired to achieve notational economy by indicating the
number of numerator and denominator parameters but not specifying them,
we write pFq. It is permissible for either p or q, or both, to be zero. We use
the notation pFq (a0; c0;z) to represent a η×1 vector (where z={zj} is also
η × 1) with representative element {pFq (a0; c0; zj)}.

If any numerator parameter ak in (8) is zero or a negative integer, the
pFq series will terminate after (1− ak) terms, the resulting sum being a
polynomial of degree (−ak) in z, and convergence is not an issue. If some
13Oldham and Spanier (1974, p. 17) provide the general expression Γ (−v)Γ (−w)−1 =

(−1)w−v w! (v!)−1, for (v,w) ∈ Z2+.
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denominator parameters are cj ∈ Z−, there must exist a corresponding nu-
merator parameter ak ∈ Z0,−, with ak ≥ max {cj : cj ∈ Z−}. This ensures
that no zero factors (simple poles) appear in the denominators of the series.
Note that no cj may equal zero. Also, pFq (a0; c0; 0) = 1 follows directly from
(8). If ak = cj 6= 0, for some j, k, so that ak and cj coalesce, then the corre-
sponding terms in the power series cancel, and pFq reduces to p−1Fq−1 (e.g.
1F1 (a; a;x) = 0F0 (x), which is the simplest form of conßuence relation).
Multiplication (but not division) of parameters is commutative.

Hypergeometric series are convergent within certain domains of their
arguments, and an application of a ratio test (e.g. Widder, 1989, pp. 288-
289) to the power series (8) shows the following:

� If p < q + 1, the series is an entire function of z, and converges abso-
lutely when |z| <∞.

� If p = q + 1, the series converges for |z| < 1 and diverges for |z| > 1.
DeÞne ψ =

Pq
j=1 (cj − aj) − aq+1. The series (8) is absolutely con-

vergent on the unit circle |z| = 1 when Re (ψ) > 0, and conditionally
convergent for |z| 6= 1 when −1 < Re (ψ) ≤ 0. When z lies outside
of (or, for numerical reasons, within but close to) the boundary of
convergence, analytic continuation is necessary, with transformation
of arguments to lie in the convergence domain. Various transforma-
tion formulae are available in the literature, but analytic equivalence
does not equal computational equivalence, and different formulae can
have very different numerical properties, which raises issues of efficient
generation. The hypergeometrics p+1Fp are generally more difficult to
generate than those for which p < q+1, and especially as p increases.

� If p > q+1, the series diverges for z 6= 0. Series of this type are often
interpreted as asymptotic series for z → 0.

3.4 The exponential and binomial functions: 0F0 and 1F0

The most elementary instance of the pFq is the case for which no numerator
or denominator parameters are present. The resulting 0F0 is the exponential

0F0 (z) ≡
∞X
n=0

zn

n!
≡ exp (z) . (9)

In the case of one numerator parameter and no denominator parameters, we
obtain the binomial expansion
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1F0 (a;−z) ≡
∞X
n=0

(a)n (−z)n
n!

≡ (1 + z)−a . (10)

We make use of the r.h.s. of these expressions when generating the exponen-
tial and binomial; this is far more efficient than use of the series expansions.

3.5 Kummer�s function: 1F1

When p = q = 1, we have Kummer�s conßuent (degenerate) hypergeometric
function, for all a, z ∈ R and c 6= 0:14

1F1 (a; c; z) ≡
∞X
n=0

(a)n
(c)n

× z
n

n!
. (11)

If c ∈ Z−, it is required that a− c ∈ Z+. It satisÞes an important identity,
Kummer�s Transform, which constitutes a reßection formula for the 1F1:

1F1 (a; c; z) ≡ exp (z) 1F1(c− a; c;−z). (12)

For some special cases of the 1F1, including representations of Hermite poly-
nomials and cylinder functions, see Lebedev (1972, pp. 271-274).

Given dependence upon the argument, the 1F1 may or may not exhibit
zeros or optima depending upon the values of the two parameters. The 1F1
is analytically well-behaved: except when the series terminates (degenerate
case) it belongs to an exponential class of functions, and is rapidly convergent
for all Þnite z � the series representation then provides a practical method
for calculating 1F1. For large values of the argument, numerical values
may be calculated most efficiently via the asymptotic representations in
Abadir (1999, p. 298), which derive from relations of the 1F1 with Tricomi�s
function, following asymptotic expansion of the latter:

1F1 (a; c; z) ∼
½

Γ (c)Γ (c− a)−1 |z|−a , z →−∞
Γ (c)Γ (a)−1 za−c exp (z) , z → +∞. (13)

Following investigation, we do not suggest use of asymptotics in an auto-
mated procedure involving generation of the 1F1, since the accuracy of (13)
can be shown to vary in a complicated manner with a, c, and z (the unusual
�angel�s wings� problem discussed in the Appendix).
14Alternative notation for Kummer�s function in the literature includes Φ (a; c; z),

M (a, c, z), and
∞
u (a, b, z). Our notation clariÞes the relationship between the 1F1 and

the generalized hypergeometric pFq, and permits unambiguous determination of a, c.
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3.6 The Gaussian hypergeometric series: 2F1

The function 2F1 occurs widely in applied problems, largely due to the fact
that it is a solution to a certain Fuschian differential equation.15 The 2F1
has a rather complicated structure, and various limiting cases (e.g. the
behaviour of 2F1 as z → 1 can be classiÞed according to a, b, and c; see Pon-
nusamy, 1997; and Temme, 2002, for large parameter asymptotics). When
the 2F1 is represented by a non-terminating inÞnite series, the radius of con-
vergence is unity. However, for |z| ≥ 1, analytic continuation is required.
Use of argument transformations for convergence of the 2F1 is discussed by
Forrey (1997), who proposes transformation to the interval [0, 1/2], leading
to rapid convergence of the resulting series. In this paper, we combine re-
sults from Forrey (1997); and from Erdélyi et al (1953, pp. 105-107, eqns.
7, 23, 33) and Lebedev (1972, p. 249) [E and F below, respectively], to give
the following transformations (where w is the transformed argument, and
S ≡ 2F1 (a, b; c; z)).16

A z ∈ (−∞,−1)→ w = (1− z)−1 ∈ ¡0, 12¢
S = (1− z)−aA1 × 2F1

³
a, c− b;a− b+ 1; (1− z)−1

´
+(1− z)−bA2 × 2F1

³
b, c− a; b− a+ 1; (1− z)−1

´
.

B z ∈ [−1, 0)→ w = z (z − 1)−1 ∈ ¡0, 12¤
Pfaff-Kummer Transform

S = (1− z)−a 2F1
³
a, c− b; c; z (z − 1)−1

´
.

C z ∈ £0, 12¤→ w = z ∈ £0, 12¤
No transformation needed

15 It is called the Gaussian hypergeometric series following Gauss� examination of this
inÞnite series in his 1812 thesis: Disquisitiones generales circa seriem inÞnitam.
16This method improves upon the similar approach proposed by Lawford (2001, pp.

55-56) in two ways: Firstly, the transformed argument lies in [0, 1/2] rather than [0, 1],
which increases the speed of convergence. Secondly, Forrey (1997) proposes an approach
for dealing with pathological limiting cases, based on Þnite-difference techniques. We
do not implement this here, since we suppose that such parameter combinations will
only be encountered on subsets of Lebesgue measure zero (or �very small� subsets) in
(a, b, c)�space, and would be too complicated to code for a small expected return in appli-
cations/simulations. However, such limiting cases do represent generic solutions to various
problems in mathematics.
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or Euler�s Transform

S = (1− z)c−a−b 2F1 (c− a, c− b; c; z) .

D z ∈ ¡12 , 1¤→ w = 1− z ∈ £0, 12¢
S = A3 × 2F1 (a, b; a+ b− c+ 1; 1− z) + (1− z)(c−a−b)

×A4 × 2F1 (c− a, c− b; c− a− b+ 1; 1− z) .

E z ∈ (1, 2]→ w = 1− z−1 ∈ ¡0, 12¤
S = z−aA3 × 2F1

¡
a, a− c+ 1; a+ b− c+ 1; 1− z−1¢

+za−c (1− z)c−a−bA4 × 2F1
¡
c− a, 1− a; c− a− b+ 1; 1− z−1¢ ,

where z > 1 ensures that both z−a and za−c are real for arbitrary a,b
and c; however, (1− z)c−a−b may take complex values.

F z ∈ (2,∞)→ w = z−1 ∈ ¡0, 12¢
S = (−z)−aA1 × 2F1

¡
a, a− c+ 1; a− b+ 1; z−1¢

+(−z)−bA2 × 2F1
¡
b, b− c+ 1; b− a+ 1; z−1¢ ,

where both (−z)−a and (−z)−b may be complex; and A1, . . . , A4 are
deÞned as follows:

A1 = Γ (c)Γ (b− a) {Γ (b)Γ (c− a)}−1 ;
A2 = Γ (c)Γ (a− b) {Γ (a)Γ (c− b)}−1 ;
A3 = Γ (c)Γ (c− a− b) {Γ (c− a)Γ (c− b)}−1 ;
A4 = Γ (c)Γ (a+ b− c) {Γ (a)Γ (b)}−1 .

1. In cases (A) and (F), problems arise when a− b ∈ Z; in cases (D) and
(E), problems arise when c− a− b ∈ Z; essentially, each of the terms
is inÞnite when taken individually, although their sum remains Þnite.
Some inaccuracies may arise when parameters are close to these cases.

2. Given the following conditions: b−a > 0, a−b > 0, c−a−b > 0, a+b−
c > 0 (respectively), we can write A1, A2, A3, A4 as 2F1 (a, c− b; c; 1) ,
2F1 (c− a, b; c; 1) , 2F1 (a, b; c; 1) and 2F1 (c− a, c− b; c; 1).17

17See Rainville (1960, pp. 48-49) and Bell (1968, pp. 212-213) for proofs of the Gaussian
summation formula 2F1 (a, b; c; 1) = Γ (c)Γ (c− a− b) {Γ (c− a)Γ (c− b)}−1.
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3.7 (Vector) linear updating

Use of the series expansions, with explicit calculation of Pochhammer terms,
(e.g. by recursion), may result in considerable inaccuracies when any of
the parameters becomes large. Since a Þnite number of terms is sufficient
for precision to any Þnite number of decimal places, it is more reasonable
to employ a linear updating formula, (Abadir, 1999, pp. 326-327), which
relates the successive terms tj+1 and tj in pFq =

P∞
j=0 tj as follows:

Scalar update (pFq)

tj+1 ≡ tj (a1 + j) · · · (ap + j)
(c1 + j) · · · (cq + j)

µ
z

j + 1

¶
; t0 = 1; j ∈ Z0,+. (14)

Terms are computed until a term becomes zero to the required degree of
precision, the remaining terms being truncated. The series associated with
p < q + 1 converge very rapidly, with few terms being required to achieve a
high level of precision.

Vectors 0F0 and 1F0 may be generated using the representations (9) and
(10) respectively, for all arguments, i.e. the n× 1 vectors {0F0} and {1F0}
may be calculated for all n elements simultaneously (we assume throughout
that the parameters a and c are the same for all observations). Matters
become more complicated for higher-order hypergeometrics, which require
linear updating. It is unwise to consider each element in turn: this will
be a computationally intensive procedure, even in the case of few observa-
tions, and is impossibly time consuming for high-order hypergeometrics. We
present a simple �conservative� solution here in the context of a pFq series,
where asymptotics are used; the approach generalizes without difficulty to
evaluation of hypergeometrics which require analytic continuation, and is
implemented in the numerical examples, and in the simulations.

Consider an n× 1 vector of real arguments z, where z = {zj}. We sort
the elements of z in ascending order and enter these into an n × 1 vector
ψ. Note that this operation is valid, since we are not dealing with time
series data. DeÞne S (A) as the set containing the same elements as A,
and S (A)={|x| : x ∈ S (A)}. We then partition ψ as ψ =

¡
ψ01,ψ

0
2,ψ

0
3

¢0,
where S (ψ1) = {zj : zj ≤ τ1}, S (ψ2) = {zj : τ1 < zj < τ2}, and S (ψ3) =
{zj : τ2 ≤ zj}. The vectors ψ1, ψ2, and ψ3 contain n1, n2 and n3 arguments,
such that n1, n2, n3 ≥ 0 and n1+n2+n3 = n. The constants τ1 < 0, τ2 > 0
determine the �cut-off� points at which we consider asymptotics (if avail-
able) to be valid. We deÞne the vector analogue of (14) as

19



Vector update (pFq)

tj+1 =
(a1 + j) · · · (ap + j)

(c1 + j) · · · (cq + j) (j + 1) (tj ¯ψ2) ; t0 = õn2 ; j ∈ Z0,+,

where tj ≡ {tj}, and ¯ is the Hadamard product. We see that convergence
is determined by Þnding the element γ = argmax

¡
S (ψ2)

¢
, and then exam-

ining the corresponding element of the linear update vector, tj (γ). Compu-
tationally, we may update ψ2 as a vector, while convergence of {tj (γ)}∞j=1
ensures convergence of the whole of ψ2. The precision of element tj (γ) was
at least 9 decimal places in applications.

1. Importantly, it is necessary to re-order the vector of hypergeometric
terms once the linear update has been completed.

2. This technique is applied to all the hypergeometrics used in the paper
that require linear updating (e.g. 0F1, 0F2 and 1F2). The procedure
must be implemented several times when argument transformations
are used (e.g. Kummer�s Transform for the 1F1, and Euler�s and other
transforms in the case of the 2F1).

3. We illustrate the gains of the vector linear update by generating a
Kummer function for multiple arguments, without asymptotics. We
generated two random vectors z1 and z2, of size n = 100 and n =
1, 000, with elements drawn from the uniform U (−5, 5). We then com-
puted the n × 1 vector 1F1 (2; 3; zj) for j = 1, 2. The term-by-term
linear update needed at least 0.11 seconds and 0.99 seconds respec-
tively. The vector linear update required no more than 0.01 seconds
and 0.06 seconds respectively to produce the resorted vector of results.
In terms of a simulation study, using 10, 000 replications, 100 obser-
vations, and generating 10 hypergeometrics in each of 35 optimization
iterations, this corresponds to a saving of 4 days CPU time.
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4 The hypergeometric test

We now use the theory detailed above to construct a new test for additive
omitted nonlinearity, given that the correct class of functional forms of the
omission is known; we then discuss details of its implementation. The as-
sumption of correct class was a useful simpliÞcation for the present work,
but will be relaxed in future studies. We propose the H(pFq) test as follows.
The null model is identical to that under the RESET procedure, (1):

y =Xβ + u.

The hypergeometric series is then used to replace the auxiliary regression of
the RESET (2) with the more general form

y = h (θ;X, by) + u, (15)

where h (·) is a vector-valued function

h (θ;X, by) = b0 ¡Xβ + pFq
¡
a0; c0;m+ b1by¢¢ ,

such that h : Rn×(k+1) × Rr×1 → Rn×1, when p ≤ q, and h : Rn×(k+1) ×
Rr×1 → Cn×1, when p = q+1; and pFq is an n× 1 vector with jth element
{pFq (a0; c0;m+ b1byj)}, m = {m}, and by = {byj}. The unknown scalar
parameters b0, b1 and m are included for scaling purposes.

The parameters θ = vec (a, c,β,m, b0, b1) form an (r + 1)×1 vector, and
are estimated using nonlinear least squares: min

θ
Ω, with objective surface

Ω = ky − h (θ;X, by)k2 ,
where kwk2 =

phw,wi = √
w0w is the Euclidean norm, and w is the

complex conjugate of w.18 Other methods of estimation are discussed by
Abadir and Rockinger (2003). When p = q + 1 (see remark 3 below), the
objective surface is modiÞed by inclusion of a Lagrangean penalty, and the
optimization problem becomes min

θ
{Ω+ λp (u)}, with

p (u) = Im(u)0 Im (u) ; and λ ∈ R+, where λ is large.
18Care must be exercised when evaluating such norms in GAUSS 3.2, e.g. w=

(2 + i, 3− 2i)0 should give w0w = 18. However, the seemingly obvious w�conj(w) returns
8 + 8i. The correct command is sumc(w.*conj(w)).
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We used λ = 100 in the simulations. We test the null hypothesis H0 : b1 = 0
(no additive nonlinearity) against the alternative H1 : b1 6= 0 by estimating
(1) and (15), and then using the pseudo-F likelihood ratio statistic

FH =
µ bu0bu
v?0v?

− 1
¶
(n− r) .

We estimate r parameters under the alternative (m is Þxed; see remark
5 below), and impose a single restriction under the null. We refer to the
distribution F(1, n− r) for reference purposes, when considering the empir-
ical size of FH . Since the true asymptotic and small-sample distributions
are unknown, we assess the null using right-hand simulated critical values
of eFH under the null; it is rejected at a 100α% level of signiÞcance when
FH > eFαH . Under the null, h (vec (a, c,β,m, b0, 0) ;X, by) reduces to a con-
stant, which essentially shifts the identiÞcation problem discussed by Hansen
(1996) onto b0. The numerically minimized sum of squared residuals under
the alternative is denoted by v?0v?. The parameter m is chosen to prevent
any numerator/denominator parameters from disappearing.

Practical considerations

1. The above formulation of the H(pFq) test is stylized, and allows for
various possible reÞnements. It was chosen to illustrate the potential
gains of using hypergeometrics in a destructive testing framework: it
combines notational simplicity and computational tractability, and al-
lows comparison with the RESET test, given that the correct class of
functional forms of the omission is known. ModiÞcations might include
consideration of a greater range of pFq�s; more effective numerical cal-
culation of hypergeometrics (wrt accuracy, speed); improved numerical
optimization; as well as introduction of additional parameters within
h (·), for greater ßexibility.

2. If p and/or q are too large, we will encounter numerical problems
analogous to micronumerosity, i.e. estimation of too many param-
eters, given too small a sample size. In addition, general, efficient
evaluation routines are not available for high-order hypergeometrics;
e.g. analytic continuation of 3F2, 4F3, etc. will be very complicated,
as are asymptotics for general pFq. We therefore focus attention on
0F0, 0F1, 0F2, 1F1, 1F2 (p ≤ q), and 1F0, 2F1 (p = q + 1). Despite
the efficient algorithm presented for the 2F1, we were unable to in-
corporate it into our simulation study; essentially, reliable estimation
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of the 2F1 parameters was very slow, and some convergence problems
were encountered. This does not preclude use of the 2F1 for testing,
given an improved estimation routine; and we illustrate the usefulness
of this function for constructive modelling, in the Appendix, where a
grid-search is used across some of the 2F1 parameters.

3. When p ≤ q, the pFq series converges absolutely for all |z| < ∞,
and the hypergeometric cannot be complex-valued if both parame-
ters and argument are real. However, when evaluating the p+1Fp out-
side of |z| < 1, with use of a closed-form (1F0), or analytic continua-
tion (2F1), the hypergeometric function may be complex-valued; e.g.
1F0

¡−12 ; 5¢ = +√−4 = 2i, and 2F1
¡
1
3 ,
5
6 ;
2
3 ; 5
¢ ≈ 0.1872− 0.4840i [in

both cases, the unmodiÞed pFq series will diverge]. Implementation of
the test procedure, without correction for complex-valued hypergeo-
metrics, was shown to severely reduce the power of the test for the 1F0;
power results given an artiÞcial modiÞcation of the objective surface
Ω for the 1F0 (see Lawford, 2001) were poor, and mild convergence
problems arose; neither case is reported here.

4. We considered two earlier formulations of the test, based upon

h (θ;X, by) =Xβ + b0 pFq¡a0; c0;m+ b1by¢ ,
for both H01 : b0 = 0 and H02 : b1 = 0, against the two-sided al-
ternatives. Use of H01 creates a difficulty, since a, c, m and b1 are
not identiÞed under the null. When a hypothesis on some parameters
causes other parameters to disappear from the model, then nonstan-
dard asymptotics arise. We do not wish to Þx the hypergeometric
parameters in advance, since this would reduce both ßexibility and
power. While Hansen (1996) provides a theoretical framework for in-
ference in such cases, his approach seems too complicated to apply
here (a multidimensional grid-search, with the parameter space re-
placed by a discrete approximation, would be very expensive). We
considered two simpler solutions: H02 : b1 = 0, which was seen to
lead to poor power in simulations; and the preferred formulation used
in this paper. Although (15) does not reduce to (1) under the null
H0 : b1 = 0, the parameter b0 is a constant under the null; and by the
Frisch-Waugh decomposition theorem, this parameter has no effect
upon the distribution of the residual sum of squares.
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5. In a series of simulation studies, we assessed a variety of values for m,
both ßoating and Þxed. The case m = −1 (where the bar denotes a
Þxed parameter) gave the best power results among the variants and
is reported below; this was seen to be a good choice for all the H(pFq)
tests which require m 6= 0 (e.g. for H(1F0), we need m /∈ {0, 1} and
a 6= 0, so that no parameters disappear).

6. The function 0F1 converges absolutely for all real Þnite arguments
and is thus real everywhere. It is the simplest hypergeometric that
requires generation by the linear updating algorithm. The remain-
ing hypergeometrics of interest pose potential identiÞcation problems,
since the search routine may be unable to distinguish between two
numerator or two denominator parameters, when these are close in
magnitude. As a result, the optimization routine may loop forever.
We solve this by an ordering of the parameters in the hypergeometric
function. Whenever two numerator and/or denominator parameters
are present, we deÞne a2 ≡ a1+|a02| and/or c2 ≡ c1+|c02|. For instance,
we Þt 1F2 (a; c1, c1 + |c02| ;m+ b1byj).

7. The H(pFq) test is based upon a numerical optimization. For this rea-
son, the choice of starting values is of some importance and requires
particular attention. We noticed a number of interesting features dur-
ing the optimizations, which enabled us to considerably reduce the
CPU time needed for the simulations. The starting values for the pa-
rameters of h (·) are denoted by a superscript � throughout, and we
use superscript ? to refer to the numerically optimized parameters.

[Parameter signs] The sign of any numerator or denominator pa-
rameters, or of b1, did not change from the sign of the starting values
(e.g. if a� > 0, then a? > 0 always resulted). The optimization routine
was unable to Þnd optima associated with some optimized parame-
ters of the opposite sign to their starting value. To facilitate correct
optimization, it was necessary to consider both positive and negative
values for ak, (k = 1, 2, . . . , p), and for b1. We also noted a lack of
convergence when a� was chosen to be a negative integer: the start-
ing parameter did not change over the iterations in some cases. We
suggest that a� ∈ Z−,0 should not be used in practical applications.
[Singularities] Denominator parameters pose an additional problem
when any c� < 0 is chosen. The series expansion exhibits regular
singularities at c ∈ Z−,0. If c� ∈ [%, %+ 1], where % ∈ Z−, then c? ∈
[%, %+ 1] always results, i.e. the denominator parameter is �trapped�
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within the two contiguous singularities. In this paper, we always chose
c� > 0; in future work, it would be of some interest to consider negative
starting values for c�, e.g. c� ∈ {(−5,−4) , . . . , (−1, 0) ,R+}.
[Invariance properties] The optimizations were invariant across a
large range of α� and β�. The parameter b0 was able to change sign
from that of its starting value. In fact, b?0 > 0 always resulted, due
in part to the particular choice of DGP, and optimization results were
unaffected by the choice of b�0.

[Kummer function]When either p or q is zero, the size of any numer-
ator or denominator starting values is apparently of little importance.
However, when both p and q are non-zero, interaction effects seem
to arise. For instance, the Kummer series 1F1 satisÞes the Kummer
transformation (12). Hence, we may wish to choose a� and c� such that
both signs of c�−a� are considered (e.g. if a� = ±2.5 and c� = 3.5, we
have violent results, of an exponential nature). We suggest that c� is
selected to be small in absolute value relative to a� in such cases.

If we were interested in considering every combination of signs of start-
ing values, to be more certain of Þnding global rather than local op-
tima, then we would require 2r separate optimizations (or 2r+1 if m
is estimated) for each replication, e.g. 1F2 would need 128 starts,
which is not possible given available computational power. From the
above points, we suggest reducing the number of starts by always using
α� = bα, β� = bβ and b�0 = 1. Also, c�k > 0 for each denominator pa-
rameter. We assess all combinations of signs of any numerator param-
eters ak, and of b1. Thus, the required number of starts is reduced to
2p+1 << 2r (e.g. 1F2 requires 4 starts). For instance, when H(1F0) is
implemented, we use starting parameters (α�, b�1) = (±2.5,±1), where
each combination of signs is considered, in addition to α� = bα, β� = bβ,
b�0 = 1, and m = −1. The minimum value of the optimized objective
function is chosen from the four optimizations.19

No other restrictions were placed upon the parameters and only minor
convergence difficulties were encountered (in several H(1F1) replica-
tions). It is unwise to attempt any updating of starting values, since

19Analogous problems arise in the implementation of artiÞcial neural networks (ANN�s),
which often apply the multistart method. This uses multiple starting points; of those that
converge, the �best� are chosen or combined. Another method of dealing local versus
global ANN optima is to perturb the point in question and check whether the optimization
continues to return to the same point. Multiple starts are also used in semi-nonparametric
modelling, e.g. see Brunner (1992) for a discussion.
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some regions of convergence may always lead to local optima. Ideally,
we would like to assess many random starting values, although this
is currently feasible only in a single implementation of the test, or in
a modelling rather than testing context. The starting values that we
used are given in Table 1, with approximate CPU times needed to
simulate critical values with 10, 000 replications and N = 100.

8. We also assessed replacement of byj with Xj, which gave critical values
that were identical to those derived when byj was used; this is unsur-
prising, since byj is an affine transformation of Xj.

9. Different optimization methods have varying degrees of success in dif-
ferent applications and a great deal of experimentation was required.
An iterative algorithm may search forever unless a termination crite-
rion is speciÞed. Hence, it was important to experiment with tolerance
to assess the sensitivity of the results to changes in stopping rules.
Since we are formulating our tests in terms of SSR, Þnding an exact
minimum is much less important than ensuring that further decreases
in SSR are marginal. The routine may be halted at this stage. Since
our choice of tolerance is not always satisÞed, due to a very ßat ob-
jective surface near to the optimum, we specify a maximum number
of iterations of 35, after which the optimization terminates. It was
necessary to verify in each simulation of H(pFq) that the value of the
objective surface would change little given additional iterations.

10. Table 2 summarizes the generation methods for each of the H(pFq)
tests: (1) is a linear update required? (2) do we impose a Lagrangean
penalty against complex-valued hypergeometrics? (3) do we order nu-
merator and/or denominator parameters? (4) are asymptotics consid-
ered? [see Section 3.5] (5) are argument transformations applied?

5 Monte Carlo study

In this section, we assess the small-sample distributional properties of the
hypergeometric H(pFq) test statistic; and also its ability to detect additive
omitted nonlinearity, when the class of functional forms of the omission
is known. We present the main results of an extensive simulation study
that compares H(pFq) against the RESETs. All simulations were run on
a Pentium 3, 450MHz machine, with 128MB of RAM, using GAUSS 3.2
and the CO optimization module, under Microsoft Windows 98; and all
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reported CPU times in the paper refer to this speciÞcation. At a conservative
estimate, 7 − 8, 000 hours of CPU time were used in the development and
investigation of the properties of the hypergeometric tests.

5.1 Setup

We use the simple data generating process (DGP)

yj = α1 + α2Xj + α3 g (Xj) + εj, (16)

where α1, α2 and α3 are scalar parameters; εj ∼N(0, 1); j = 1, . . . ,N , where
N is the sample size; and g (·) is some nonlinear function, which will be
chosen to correspond to a particular class of hypergeometric functions. The
functions g (·) must be scaled carefully, in order to show the relative power
differences between the competing tests. We give size and power results for
samples of N = 25, 50, 100 observations, and we use 10, 000 replications in
all cases. Since we condition on {Xj}Nj=1, we only report results for Xj ∼
N(0, 5). The generated set of {Xj}N1j=1 is equal to the Þrst N1 observations
generated for a larger set {Xj}N2j=1, N2 > N1. We use (16) to construct

the pairs {(yj ,Xj)}Nj=1, given parameter values (α1,α2,α3)0 = (2, 0.5, 1)0,
and with {Xj}Nj=1 generated once. We found no qualitative changes when
different parameter values were chosen, and some of our Figures display
output from these other studies. We report results for simulated quantiles
to 2 d.p. but caution against interpreting these beyond 1 d.p.; however, the
power results are quite robust against changes in the number of replications.

5.2 Results on null distributions

We obtain empirical null distributions for theH(pFq) tests using distribution
sampling, and then calculate Þnite-sample tail quantiles, which we use in our
assessment of power. We assess the size of each H(pFq) test, since they will
be implemented separately: in each instance, we test for a given omitted
nonlinear term by Þtting the corresponding hypergeometric function (as
opposed to parameters) within (16). Since the limiting distribution of our
test statistic is unknown, reference is made to the F(1,N − r), computed
using the GAUSS cdffc routine; and to the χ2 (1), in Figure 1.

Table 3 reports simulated tail quantiles for each of the hypergeometric
test statistics; and we use 5% critical values in implementing the tests. The
Table required approximately 2 weeks of CPU time to calculate. We report
in parentheses the quantiles for the corresponding F(1,N − r) distributions.
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We see comparable results for H(0F0), H(1F0), H(0F1), H(0F2) and H(1F2):
5% quantiles tend to a Þgure of roughly 4, as N increases. The test statistics
follow positively-skewed distributions and the distribution of eFH appears to
be reasonably well approximated, to 1 d.p., by F(1, N − r) in terms of 10%
and 5% quantiles, as N becomes larger. However, this observation does
not hold for the 25% and 1% quantiles. Results for H(1F1) are markedly
different; a very small number of H(1F1) replications failed to converge, in
which case we drop the offending replication and continue.20 This result for
the H(1F1) test is as yet unexplained. We calculate the ratio ς(eFH) of 1% to
5% critical values for the pseudo-F hypergeometric tests. Since this is larger
than the corresponding ratio ς (F) for the F(1,N − r), it implies that the
H(pFq) distribution has thicker tails, which become more pronounced when
the variance of the H(pFq) test statistic is smaller than that for F(1,N − r).

In Table 4, we report the simulated means and variances of the H(pFq)
test statistics. We calculate the Þrst two central moments of the F distribu-
tion (Spanos, 1986, p. 113)

E (F (m,n)) =
n

n− 2 , (n > 2) ,

and

var (F (m,n)) =
2n2 (m+ n− 2)
m (n− 2)2 (n− 4) , (n > 4) ,

and compare them with the simulated E(eFH) and var(eFH). This again shows
the different shape taken by the H(1F1) test statistic. As the sample size
increases, the other H(pFq) tests have comparable mean and variance. The
simulated variances were often seen to fall as the sample size increased.

In Figure 1, we present box plots of the H(pFq) test statistics, for
N = 100. We remove the largest 5% of the sample, since some extreme
observations obscured the results. The horizontal lines corresponding to
each �case� represent (from bottom to top of the Figure): minimum, 25th
percentile (75% quantile), median, 75th percentile and maxmimum of the
truncated sample. Hence, the topmost horizontal line represents the 5% crit-
ical value. The boxes represent interquartile ranges. We generate 10, 000
observations from the χ2 (1) and include these for comparison. Clearly, all
of the densities are highly (positively) skewed. Results are alike for all of the

20We discovered that the quantity eFH < −0.05 was a reasonable indicator that the
numerical optimization had failed. It was found that eFH ∈ [−0.05, 0] sometimes resulted
from numerical inaccuracies and indicated that the OLS solution had in fact been reached.
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H(pFq) tests except the H(1F1), which is reßected in the simulated quantiles
of Table 3. Whenever the median is unclear, it is closer to the 25th than
the 75th percentile. In Table 5, we assess the normality of the estimated
parameters using the Jarque-Bera test. Normality is strongly rejected at all
conventional small-sample or asymptotic signiÞcance levels.21

5.3 Results on power

We concentrate upon the following questions here: Firstly, are the small-
sample powers of the H(pFq) tests an improvement over those of the RE-
SET tests? Secondly, is the performance of each hypergeometric test good
against a variety of nonlinearity in that class? Tables 6�11 present power
results (using simulated critical values from Table 3 for the H(pFq) test and
exact critical values for the RESETs) against a range of nonlinear omissions.
When one of the tests outperforms the other two, we report the power in
bold type. We see that the RESET2 often has higher power than the RE-
SET, although examination of individual replications shows that RESET
can sometimes correctly identify an omission when RESET2 does not. We
expect the RESETs to perform well whenever the omission g (·) can be well
approximated by some Þnite, low-order polynomial.

SigniÞcant small-sample power gains are seen for the H(pFq) test over
the RESETs for a variety of g (·), in some cases, this represents a three-
fold increase. These gains are generally reduced as N increases except
for the H(1F2), where results perhaps indicate a failure to converge for
the H(1F2) test for small N . In Figures 2�4, we plot Þtted values for
the RESETs and appropriate H(pFq) tests, against g (Xj) = exp (0.3Xj),
g (Xj) = (1 + 0.2Xj)

2, and g (Xj) = 0F1 (2; 0.7Xj); using different DGP
parameters in each case. The H(pFq) Þts are visibly different from those
of the RESETs. A mild inconsistency is seen for one of the 0F2 omissions,
although this is much less severe than the loss suffered by the RESET2.
When the H(pFq) test is outperformed by the RESETs, the relative loss is
small. However, the H(1F1) test is seen to behave differently in Table 10,
and performs rather worse relative to the RESETs than the other H(pFq)
tests; although it does still have higher power that the RESET in some
instances.
21Lawford (2001, p. 115, Tables 3.8-3.10) examined six non-normal error pdfs: chi-

squared χ2 (2), lognormal LN(2, 1), Fisher�s F(4, 8), Student�s t(5), Cauchy C (0, 1) and
uniform U (0, 1), all transformed to be iid(0, 1) , for H(0F0), H(1F0) and H(0F1); these
tables require several weeks of CPU time for calculation, and show that 5% critical values
change considerably under non-normal errors, except for t(5) and U (0, 1).
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6 Concluding remarks

This paper has developed a new class of tests for omitted nonlinearity, based
on using the generalized hypergeometric function pFq in a novel manner,
and assuming that the correct class of functional forms of the omission is
known. We have constructed a workable procedure for implementing these
tests, and offer practical solutions to a number of unexpected theoretical
and numerical difficulties; and also give evidence of the speed and accuracy
of our method of pFq generation. We have designed a simple Monte Carlo
experiment which illustrates our Þndings. The approach appears promising,
and the power performance of the hypergeometric tests is good relative to
the RESETs. However, this is a very new Þeld, and we freely acknowledge
that many questions are still unanswered. We end with a short discussion of
directions for future research, which are under investigation by the author.

The Þrst interesting topic is the further assessment of the limiting dis-
tribution of the H(pFq) tests under the null, with a view to answering the
following question: Is the limiting distribution the same for different p and
q (which would indicate numerical problems in implementing H(1F1)), or
not (in which case the quantiles for H(1F1) demand a theoretical explana-
tion)? It is possible that p+jFq+j may have similar quantiles for various j,
(or perhaps a pattern of increase with j), but not across different p and q.
A response surface to describe how the quantiles vary with sample size N ,
p and q in pFq would be very useful; this would solve some issues related to
how a practitioner should choose critical values.

Secondly, it is important to consider a parsimonious hypergeometric test
for omitted nonlinearity given that the correct class of functional forms of
the omission is unknown. While Abadir (1999) proposes a sequential general-
to-speciÞc approach, based upon the conßuences between pFq�s of different
order, (which are potentially testable, although no application of this yet
exists in the literature), we believe that a model-selection-based procedure
merits consideration, à la Akaike and Schwarz, (see also Sin and White,
1996). Theoretical justiÞcation for the penalty function would be required.
Some rigorous theoretical foundations of this extension, and of the current
paper (e.g. consistency of test) remain to be developed.

A third strand of research would be to investigate new constructive mod-
elling procedures, as opposed to the destructive test developed in this paper.
There is a strong indication that constructive modelling using pFq�s is viable,
and can offer signiÞcant beneÞts over fully (non)parametric methods, when
applied to datasets that are not large; in addition, the estimated hypergeo-
metric parameters can reveal both functional form and shape parameters.
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7 Appendix: testing the hypergeometric code

We cross-checked our code against published results in the applied mathe-
matics and statistics literature wherever possible, and report some Þndings
on speed and accuracy below. All numerical scalar pFq computations were
veriÞed using Mathematica 4.1. Some additional guidelines for computa-
tional generation of the hypergeometric functions are given by Abadir (1999,
pp. 326-330). Other interesting methods are available for particular pFq�s,
e.g. Gautschi (2002) [uses Gauss-Jacobi quadrature to approximate integral
representations associated with the 1F1 and 2F1, for real parameters and
complex argument: a major limitation of this approach is that the integral
forms are admitted only when some parameters are restricted by certain
inequalities: b > a > 0 for the 1F1; and c > b > 0 for the 2F1].

[7.1] Richardson and Wu (1971) compare the OLS and 2SLS estimators of
structural coefficients in a certain simultaneous equation model. Use of our
Kummer routine reveals several errors in calculations based upon the 1F1:
in comparison of the biases of the estimators (ibid., p. 977, Table I; and
their equation (3.1)), the reported value of 0.65, for entry N −K1 = 100,
K2 = 5, µ2 = 2, is incorrect; the actual value is

1F1 (1.5; 2.5; 1)

1F1 (49; 50; 1)
= 0.70674369.

In comparison of MSE�s (ibid., p. 979, Table II; and their equation (4.1)),
entries N−K1 = 50, K2 = 3, µ2 = 5, and

¯̄
β
¯̄
= 3, 4, 5, 10 are incorrect: 0.39,

0.34, 0.33, 0.32 should be replaced by 0.3433, 0.3286, 0.3218, 0.3127. The
1F1 appears in Richardson and Wu (1970), in expressions for the bias and
MSE of the OLS estimator of the slope coefficient in an errors-in-variables
model. We see that entry n = 3, τ = 15 in (ibid., p. 743) Tables A-1 and
A-2a should be corrected as follows: 0.0211→ 0.0228; and 0.1056→ 0.1138.

[7.2] We test the linear update by using Saalschütz�s Theorem :

C ≡ 3F2 (a, b, c; d; e; 1)

=
Γ (d− a+ |c|)Γ (d− b+ |c|)Γ (d)Γ (d− a− b)
Γ (d− a)Γ (d− b)Γ (d+ |c|)Γ (d− a− b+ |c|) ≡ D,

where d + e = a + b + c + 1 and c ∈Z−. DeÞne A = {1, 2, . . . , n} and
B =

n
1
2 ,
1
3 , . . . ,

1
n+1

o
, where n ∈Z+ and choose parameters as follows:
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c ∈ −A; (a, b) ∈ A×A subject to a ≤ b; e ∈ B and d = a+ b + c+ 1− e.
Then, C (a, b, c, d, e) terminates after n terms; the restriction on (a, b) pre-
vents us from counting permutations (e.g. (1, 2) and (2, 1)); and d and e are
non-integer (and d 6= e 6= 0) so that no cancellation occurs between numer-
ator and denominator parameters, and C (a, b, c, d, e) has no singularities.
Choosing the parameters in this way gives 1

2n
3 (n+ 1) combinations. We

calculated C (a, b, c, d, e) and D (a, b, c, d, e) and found:

n 1
2n
3 (n+ 1) max

a,b,c,d,e
{|C −D|}

6 756 1.1504× 10−10
7 1372 2.1239× 10−9
8 2304 2.8729× 10−8
9 3645 4.2885× 10−7
10 5500 5.8254× 10−6

The reduction in accuracy occurs since inf B = 0 (i.e. the denominator of the
series approaches a singularity as n increases). The highest-order pFq that
we used in testing the linear update was taken from Krupnikov and Kölbig
(1997, p. 94, eqn. (7.7.2.10)): G ≡ 8

9 6F5
¡
1
4 ,
1
4 ,
3
4 ,
3
4 , 1,

3
2 ;
1
2 ,
5
4 ,
5
4 ,
7
4 ,
7
4 ; 1
¢

≈ 0.91596555, which evaluates the Catalan constant G correctly to 7 d.p.,
after 888 terms.

[7.3] In order to illustrate the beneÞts of our method for evaluating the 2F1,
we computed both sides of the following relation, taken from Oberhettinger
(1972, p. 556, eqn. (15.1.14)):

2F1

µ
a, a+

1

2
; 2a; z

¶
= 22a−1 (1− z)−1

2

h
1 + (1− z) 12

i1−2a
, z ∈ R \ {1},

(17)

which is complex-valued for z > 1. We set a = 1
3 and deÞne the 2000 × 1

vector of arguments z = {−10,−9.99, . . . , 9.99, 10} \ {1}. Generation of
the individual elements 2F1

³
1
3 ,
5
6 ;
2
3 ; (z)j

´
required 3.25 seconds. The vector

generation routine required no more than 0.05 seconds on the same machine;
we display results below, and plot this function in Figure 5. A simple linear
update would face problems of very slow convergence close to |z| < 1.

32



z w Update Terms 2F1 routine
and equation (17)

Terms
all series

−10 0.09091 n/a n/a 0.38965037 14

−5 0.16667 n/a n/a 0.48959014 19

−1.1 0.47619 n/a n/a 0.73827487 45

−1.01 0.49751 n/a n/a 0.75138430 48

−0.9999 0.49998 0.75290868 162, 232 0.75290868 22

−0.999 0.49975 0.75304506 17, 333 0.75304506 22

−0.99 0.49749 0.75441376 1, 837 0.75441376 22

−0.9 0.47368 0.76861431 186 0.76861431 21

0.9 0.1 2.7506396 186 2.7506396 15

0.99 0.01 8.1932127 1, 837 8.1932127 8

0.999 0.001 25.360840 17, 333 25.360840 4

0.9999 0.0001 79.633741 162, 232 79.633742 4

1.01 0.00990 n/a n/a
0.26407928
−7.9457917i 8

1.1 0.09091 n/a n/a
0.25989290
−2.5368116i 15

1.9 0.47368 n/a n/a
0.23308328
−0.90144966i 49

1.99 0.49749 n/a n/a
0.23082583
−0.86434872i 53

2.01 0.49751 n/a n/a
0.23033855
−0.85679275i 59

2.1 0.47619 n/a n/a
0.22820640
−0.82540808i 55

5 0.2 n/a n/a
0.18719874
−0.48400513i 26

10 0.1 n/a n/a
0.15705026
−0.35515658i 18
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[7.4] Practical implementation of 1F1 (a; c; z) asymptotics leads to what we
call the �angel�s wings� problem: In Figure 6, we plot µ := ratio of asymp-
totic (13) to linear update (11) [or (12)], against a−c, for 2, 000 realizations
of (a, c) ∼ U (−5, 5)2, and for z = 50. DeÞne Y (z) := {µ} , and the approxi-
mate probability of attaining no more than a 5% error through use of asymp-
totics as p (z) := card(Y (z) ∩ [0.95, 1.05]) /card(Y (z)) [card≡�cardinality�].
Choice of a constant cut-off at which asymptotics are to be applied is very
unwise, since µ clearly depends upon a and c, and the range of error from us-
ing the asymptotics may be large (e.g. inf Y (50) ≈ 0.22, supY (50) ≈ 1.20;
and p (50) ≈ 0.3218).22 Since the relationship between µ and a, c, z is un-
known, development of a reliable automated procedure will be difficult. Al-
though the accuracy of asymptotics improves as |z| increases, errors are
substantial even for large argument (e.g. p (100) ≈ 0.4818) [see also Figure
7, which plots µ against z, for 1F1 (−1.5; 3; z)].

[7.5] The quantities ψ =
Pq
k=1 ck−

Pp
j=1 aj andQ =

Qp
j=1 |aj|

¡Qq
k=1 |ck|

¢−1
have both been suggested as heuristic measures of the �fragility� of conver-
gence of a series p+1Fp, for given argument z; they measure the �weight� of
the numerator parameters relative to the denominator parameters. Follow-
ing experimentation, we note that increasing ψ tends to reduce the number
of linear update terms needed for convergence; however, given ψ, reducing
Q also tends to reduce the number of terms needed.

[7.6] When generating the 1F1, there is a clear trade-off between using
the exact linear update, (which will become inefficient as the argument in-
creases), and the asymptotic approximation, (which is inaccurate for small
argument). When z < 0, the terms of the linear update form an alter-
nating series and may lead to numerical inaccuracies for large negative
argument (e.g. 1F1 (2; 3;−40) ≈ 0.051026550, which is incorrect). We
suggest using (12) when z < 0 to transform z 7−→ −z, whereupon a lin-
ear update may be performed on the transformed function (which gives
the correct result: 1F1 (2; 3;−40) = 0.001250000; note that 1F1 (2; 3; z) =
z−2 {2 + 2ez (z − 1)}). We also found that Butler and Wood�s (2002a) cali-
brated 1F1 Laplace approximation performs better than the asymptotics for
1F1 (2; 3; z), across z ∈ [−40, 40].

22Estimates are from 5, 000 realizations of (a, c).
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[7.7] Modelling nonlinearity using the 2F1: Although it currently
seems too difficult to implement the 2F1 in an automated setting, we il-
lustrate the usefulness of the generation routines discussed in this paper, in
a constructive modelling problem. We treat an example that was considered
by Chen, Lockhart and Stephens (2002), consisting of n = 107 observations
on distance travelled in kilometres (Yi) and gasoline used in litres (Xi). A
simple Box-Cox transformation is

Y (ϑ) =

½ ¡
Y ϑ − 1¢ /ϑ, ϑ ∈ R \ {0}

lnY, ϑ = 0,
(18)

where ϑ is selected � usually by a grid search � so that the linear model
Yi (ϑ) = µ + βXi + εi, i = 1, 2, . . . , n, is approximately applicable (this
will arguably have certain desirable properties). Assuming that the errors
are N

¡
0,σ2

¢
, the maximum likelihood estimate bϑ of ϑ is found as the value

which maximizes the proÞle log-likelihood. Based upon a grid search across
ϑ ∈ {0.50, 0.51, ..., 2.50}, we Þnd bϑ ≈ 1.47. The observation that (18) may
be written more generally as (Abadir, 1999)

Y 1 (ϑ) = (Y − 1) 2F1 (1− ϑ, 1; 2; 1− Y ) , ϑ ∈ R,

suggests that the Box-Cox transformation may be generalized by replacing
(18) with a hypergeometric functional form (either involving a 2F1 or, more
generally, a pFq; with estimation of some or all parameters). To illustrate,
we assess the simple generalization

Y 2 (ϑ) = (Y − 1) 2F1 (1− ϑ,ψ; 2; 1− Y ) , (ϑ,ψ) ∈ R2.

We note that the log-likelihood function must now be modiÞed for a Jacobian
based upon the 2F1, which is termwise differentiable if it is convergent.
Searching in a neighbourhood of the solution found using (18), we estimatebϑ ≈ 1.46 and bψ ≈ 1.43, (with higher log-likelihood), using Y 2 (ϑ). Further
development of this technique is underway by the author.
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Table 1: Starting values; b�0 = 1 always chosen

Test 2p+1 Starting values Time (hrs)

H(0F0) 2 b�1 : ±1 3
H(1F0) 4 (b�1, a

�) : (±1,±2.5) 9
H(0F1) 2 (b�1, c

�) : (±1, 3.5) 11
H(0F2) 2 (b�1, c

�
1, c

�
2) : (±1, 2.5, 3.5) 11

H(1F1) 4 (b�1, a
�, c�) : (±1,±2.5, 0.8) 60

H(1F2) 4 (b�1, a
�, c�1, c

�
2) : (±1,±2.5, 0.8, 1.2) 30

Table 2: Generation of hypergeometric tests

Test Update Penalty Ordering Asympts. Transf.

H(0F0) no no no no no
H(1F0) no yes no no no
H(0F1) yes no no no no
H(0F2) yes no yes no no
H(1F1) yes no no yes yes
H(1F2) yes no yes no no
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Table 3: Tail quantiles of H(pFq) test statistics; F(1,N − r) in (.)

Test N 25% 10% 5% 1% ς(�FH) ς(F)

25 0.67 (1.40) 1.94 (2.96) 3.00 (4.32) 6.27 (8.02) 2.09 1.85
H(0F0) 50 1.15 (1.36) 2.74 (2.82) 4.10 (4.05) 7.33 (7.22) 1.79 1.78
(r = 4) 100 1.07 (1.34) 2.72 (2.76) 3.87 (3.94) 7.21 (6.91) 1.86 1.75

25 0.70 (1.40) 1.92 (2.97) 2.99 (4.35) 6.12 (8.10) 2.05 1.86
H(1F0) 50 1.05 (1.36) 2.52 (2.82) 3.75 (4.06) 6.86 (7.23) 1.83 1.78
(r = 5) 100 1.20 (1.34) 2.75 (2.76) 4.02 (3.94) 7.23 (6.91) 1.80 1.75

25 0.83 (1.40) 2.20 (2.97) 3.44 (4.35) 6.88 (8.10) 2.00 1.86
H(0F1) 50 0.95 (1.36) 2.49 (2.82) 3.79 (4.06) 7.01 (7.23) 1.85 1.78
(r = 5) 100 1.01 (1.34) 2.74 (2.76) 3.98 (3.94) 7.36 (6.91) 1.85 1.75

25 0.80 (1.41) 2.27 (2.99) 3.59 (4.38) 7.15 (8.18) 1.99 1.87
H(0F2) 50 0.87 (1.36) 2.46 (2.82) 3.81 (4.06) 7.07 (7.25) 1.85 1.78
(r = 6) 100 0.75 (1.34) 2.35 (2.76) 3.67 (3.94) 6.92 (6.91) 1.89 1.75

25 2.42 (1.41) 4.25 (2.99) 5.67 (4.38) 9.74 (8.18) 1.72 1.87
H(1F1) 50 3.14 (1.36) 5.27 (2.82) 6.87 (4.06) 10.49 (7.25) 1.53 1.78
(r = 6) 100 3.00 (1.34) 5.11 (2.76) 6.71 (3.94) 10.59 (6.91) 1.58 1.75

25 1.78 (1.41) 3.49 (3.01) 4.84 (4.41) 8.17 (8.29) 1.69 1.88
H(1F2) 50 1.17 (1.36) 3.00 (2.83) 4.39 (4.07) 8.07 (7.26) 1.84 1.79
(r = 7) 100 0.77 (1.34) 2.49 (2.76) 3.83 (3.94) 7.33 (6.92) 1.91 1.75
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Table 4: Simulated moments of H(pFq) test statistics

Test N E(�FH) E(F) var(�FH) var(F)

25 0.63 1.105 1.80 2.874
H(0F0) 50 0.89 1.045 2.59 2.342
(r = 4) 100 0.84 1.021 2.36 2.154

25 0.62 1.111 1.64 2.932
H(1F0) 50 0.82 1.047 2.24 2.351
(r = 5) 100 0.92 1.022 2.35 2.156

25 0.72 1.111 2.18 2.932
H(0F1) 50 0.77 1.047 2.29 2.351
(r = 5) 100 0.82 1.022 2.47 2.156

25 0.72 1.118 2.24 2.998
H(0F2) 50 0.75 1.048 2.36 2.360
(r = 6) 100 0.71 1.022 2.08 2.157

25 1.79 1.118 4.31 2.998
H(1F1) 50 2.29 1.048 5.21 2.360
(r = 6) 100 2.12 1.022 5.27 2.157

25 1.29 1.125 3.46 3.074
H(1F2) 50 0.92 1.049 3.09 2.369
(r = 7) 100 0.74 1.022 2.29 2.159
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Table 5: Normality of estimated parameters (N = 100)

Test Parameter SK KT JB

H(0F0) b0 5.33 34.76 467662.95
b1 -2.62 10.49 34854.42

a 0.0066 0.0035 3741.39
H(1F0) b0 61.59 5059.56 1.07x1010

b1 -1.15 24.64 197293.23

c 0.0052 0.0030 3742.53
H(0F1) b0 1.40 464.48 8.87x107

b1 -0.00039 0.010 3724.78

c1 1.03 4.34 2502.33
H(0F2) c2 0.82 4.83 2504.32

b0 27.21 2195.46 2.00x109

b1 -0.0013 0.00088 3747.81

a 0.12 1.35 1156.41
H(1F1) c 5.76 97.17 3.75x106

b0 0.88 3.73 1506.90
b1 2.32 13.55 55298.90

a -0.18 0.42 2838.73
c1 5.80 46.25 835306.60

H(1F2) c2 2.72 16.93 93156.47
b0 -1.71 48.38 863092.56
b1 -0.34 4.20 794.80
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Table 6: Power of H(0F0) test

g(Xj) N RESET RESET2 H(0F0)

25 12 19 28
exp (0.3Xj) 50 25 36 44

100 78 86 89
25 13 20 34

0.5 exp (0.4Xj) 50 25 35 44
100 80 84 89
25 7 8 11

0.8 exp (−0.3Xj) 50 14 21 18
100 92 96 93

Table 7: Power of H(1F0) test

g(Xj) N RESET RESET2 H(1F0)

25 11 16 33
(1− 0.1Xj)−2 50 18 26 35

100 70 72 79
25 8 10 27

(1 + 0.2Xj)
2 50 15 23 31

100 60 77 80
25 30 45 60

0.1(1 + 0.5Xj)
3 50 59 71 78

100 98 91 96
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Table 8: Power of H(0F1) test

g(Xj) N RESET RESET2 H(0F1)

25 9 13 23
0F1(2; 0.7Xj) 50 17 26 35

100 59 73 77
25 21 31 43

0.4 0F1(−1.5; 0.4Xj) 50 36 46 57
100 92 79 94
25 11 17 28

−0.4 0F1(−0.8; 0.2Xj) 50 23 36 48
100 76 88 90

Table 9: Power of H(0F2) test

g(Xj) N RESET RESET2 H(0F2)

25 9 12 21
0F2(0.5, 1.5; 0.5Xj) 50 18 27 36

100 67 82 85
25 7 10 16

2 0F2(1, 5; 1.5Xj) 50 14 21 29
100 50 68 74
25 96 81 96

0.2 0F2(−0.5,−2.5;Xj) 50 100 37 86
100 100 91 100
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Table 10: Power of H(1F1) test

g(Xj) N RESET RESET2 H(1F1)

25 9 12 7
1F1(0.2;−0.5; 0.25Xj) 50 14 21 8

100 46 56 42

25 7 8 8
0.1 1F1(−3; 0.5; 0.3Xj) 50 12 19 14

100 58 74 62

25 11 17 21
1F1(2; 3; 0.4Xj) 50 21 31 25

100 71 79 75

Table 11: Power of H(1F2) test

g(Xj) N RESET RESET2 H(1F2)

25 17 27 25
0.1 1F2(3; 1, 2;Xj) 50 34 48 48

100 91 93 96
25 6 8 4

1F2(−1.5; 1, 2;Xj) 50 11 16 14
100 37 54 59
25 6 6 4

1F2(0.5; 1.5, 2.5;−1.5Xj) 50 9 12 13
100 48 63 68
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Figure 1: Boxplots of simulated null distributions of H(pFq) tests
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Figure 2: RESET, RESET2 and H(0F0) Þts; N = 100; Xj ∼N(0, 5);
omission g (Xj) = exp (0.3Xj); circles represent generated points
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Figure 3: RESET, RESET2 and H(1F0) Þts; N = 100; Xj ∼N(0, 5);
omission g (Xj) = (1 + 0.2Xj)

2; circles represent generated points
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Figure 4: RESET, RESET2 and H(0F1) Þts; N = 100; Xj ∼N(0, 5);
omission g (Xj) = 0F1 (2; 0.7Xj); circles represent generated points
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Figure 5: Generation of 2F1
¡
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¢
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Figure 6: �Angel�s wings�, illustrates difficulty of using asymptotics for the
1F1; 2, 000 points displayed
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Figure 7: Generation of 1F1 (−1.5; 3; z) using Kummer Transform for z < 0;
ratio of asymptotic expression to linear update result; vertical bold lines
indicate arguments for which ratio≈ 0.8.
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